

Spatial Databases – Dr. Martin Sudmanns

Exercise 13: Database backend
for a WebGIS
Final Project

Annabelle Kiefer (s1111172)

Winter 2024/2025

Due date: 21.03.2025

Spatial Databases

Annabelle Kiefer (s1111172)

1

Contents

Task ... 2

Introduction .. 2

Database modeling .. 3

Conceptual database model ... 3

Logical database model .. 4

Implementation ... 5

Creating tables (DDL) .. 5

Inserting data (DML) .. 5

Creating Views & Indexes (DDL) ... 7

Queries .. 8

Non-spatial queries .. 8

Spatial queries .. 9

Conclusion .. 12

Spatial Databases

Annabelle Kiefer (s1111172)

2

Task

Create a database for a city festival (choose any, e.g., of your hometown or create a fictional one) as a

backend for a WebGIS. Search for information that you can use for data modeling. The database itself

should (if no reasons are given) be in the third normal form. Import data and de-normalize – if

necessary with views. Create indexes where required. Create at least three queries for the application

that is defined in the second requirement to document that the database works.

Introduction

To accomplish this task, I decided to create a database for the NatureOne Festival in Kastellaun,

Germany. The festival was founded in 1995 and today takes place on the former military base Pydna

on the hills of the Hunsrück. Every year, more than 350 artists from all over the world perform on 20

different stages. These stages can be found both indoors in the form of tents or former bunkers and

outdoors. The festival offers a wide range of electronic music from techno to trance and hardstyle. At

the same time, the festival is known for its CampingVillage with hundreds of private floors and parties

(source: https://www.nature-one.de/en).

To generate the data for the database, I mainly used the Woov app, which provides festival information

in the form of a timetable and an interactive map with various polygon and point data (see figure 1).

At this point, it should be noted that some of the information has been simplified. In addition, some

attributes, especially in relation to the food spots, were created using pseudo-data.

Figure 1. Timetable information (left) and an interactive map (right), retrieved from the Woov app.

https://www.nature-one.de/en

Spatial Databases

Annabelle Kiefer (s1111172)

3

Database modeling

Conceptual database model

The conceptual database model is an abstract model which defines the main entities and their semantic

relationships (name, degree & cardinality) between them. At the same time, it ignores any

specifications of the system on which it will be implemented.

Figure 2. Conceptual database model, created using draw.io.

For this specific scenario, seven different entities, namely areas, facilities, stages, operators, booths,

timetable and user were defined with their key attributes. At the same time, the relationships between

the entities were determined. In this context, facilities, stages and booths are related to areas with a

0:N relationship, since a given area may contain zero or many of these attributes. The relationship

between stages and timetable is 1:N, since at least one event takes place on a stage. The table operator

was created to fulfill the third normal form. Otherwise, the name and location of an operator would be

included in the stages table, although they depend on each other and not on the primary key. The

relationship is 1:N, since a stage has exactly one operator, but an operator can be responsible for more

than one stage.

Spatial Databases

Annabelle Kiefer (s1111172)

4

Logical database model

The logical database model is more detailed than the conceptual database model and focuses on how

the data is structured in a database, e.g. in a relational database system or in an object-oriented

database system. The model is expanded to include primary and foreign keys and normalization comes

into focus. Nevertheless, the logical database model is not tied to a specific software product.

Figure 3. Logical database model created with the ERD tool in pgAdmin.

This logical database model is based on the conceptual database model that was created with draw.io.

In addition to the entities with the main attributes and their relationships, the primary and foreign keys

as well as the data types of the attributes are now also defined. For the tables facilities, stages and

booths, the area_id was defined as a foreign key. Similarly, the timetable and the operators table are

linked to the stages table via foreign keys. Since this database doesn’t contain many-to-many

relationships, no join tables were created.

Spatial Databases

Annabelle Kiefer (s1111172)

5

Implementation

Creating tables (DDL)

The first step in implementing the database was to add the PostGIS extension. After that, I focused on

the Data Definition Language by creating the tables for the seven entities with their rows and datatypes.

Here I also added check constraints to reduce errors in certain rows, especially when categories were

defined (see Code Block 1). For the tables containing geometry, the coordinate system was set to WGS

84/Pseudo-Mercator (EPSG:3857).

CREATE EXTENSION postgis;

CREATE TABLE areas (

 area_id SERIAL PRIMARY KEY,

 name TEXT NOT NULL,

 category TEXT CHECK (category IN ('bunker', 'mainfloor', 'clubfloor', 'food_area',

'camping', 'parking', 'festival_ground')),

 geom GEOMETRY(POLYGON, 3857));

Code Block 1. Creating a PostGIS Extension and the tables (see the complete code under source code).

Inserting data (DML)

For the Data Manipulation Language, I had two different approaches, depending on whether a table

contains geometry or not. For the tables without geometry, i.e. timetable & operators, I added the

information manually using SQL. To speed up the process, I simplified the original data to a certain

extent. For the timetable, this resulted in 277 rows with information about which DJs are playing on

certain stages at a defined time.

INSERT INTO timetable (name, festival_day, start_time, end_time, stage_id)

VALUES

 ('Bennett', 'Friday', '2025-08-01 20:00:00', '2025-08-01 21:00:00', 1),

 ('LariLuke', 'Friday', '2025-08-01 21:00:00', '2025-08-01 22:30:00', 1),

 ('Öwnboss', 'Friday', '2025-08-01 22:30:00', '2025-08-02 00:00:00', 1),

 ('NERVO', 'Friday', '2025-08-02 00:00:00', '2025-08-02 01:30:00', 1),

 ('Neelix', 'Friday', '2025-08-02 01:30:00', '2025-08-02 03:00:00', 1),

 ('OBS', 'Friday', '2025-08-02 03:00:00', '2025-08-02 04:30:00', 1),

 ('MOGUAI', 'Friday', '2025-08-02 04:30:00', '2025-08-02 06:00:00', 1);

Code Block 2. Inserting data into the tables without geometry (see the complete code under source code).

For the tables containing geometry data in the form of points or polygons, I used QGIS to create the

points and polygons. Simultaneously with the creation of the point and polygon features, I also added

the necessary attribute information via QGIS (see figure 4 & 5).

Spatial Databases

Annabelle Kiefer (s1111172)

6

Figure 4. Creating the polygon data for the area table using Toggle Editing in QGIS.

Figure 5. Creating the point data for the booths table using Toggle Editing in QGIS.

In order to be able to recreate the database at a later date, I then queried the insert-statements using

SQL. Following this, I copied the insert-statements from pgAdmin and pasted them into the source

code.

INSERT INTO stages (stage_id, name, type, floor_type, genre, area_id, operator_id, geom)

VALUES

 (1, 'OpenAirFloor', 'outdoor', 'mainfloor', 'mixed', 1, 1,

ST_SetSRID(ST_GeomFromText('POINT(826599.5616658438 6453742.386001241)'), 3857)),

 (2, 'ClassicTerminal', 'outdoor', 'mainfloor', 'mixed', 2, 1,

ST_SetSRID(ST_GeomFromText('POINT(826605.7955003252 6453952.777914982)'), 3857)),

 (3, 'CenturyCircus', 'indoor_tent', 'mainfloor', 'techno', 3, 1,

ST_SetSRID(ST_GeomFromText('POINT(826892.0324002552 6453940.050502917)'), 3857)),

 (4, 'Homebase', 'indoor_tent', 'mainfloor', 'house', 4, 1,

ST_SetSRID(ST_GeomFromText('POINT(826890.7336847382 6453698.229673668)'), 3857)),

Spatial Databases

Annabelle Kiefer (s1111172)

7

 (5, 'DirtyWorkz', 'outdoor', 'clubfloor', 'hardstyle', 17, 2,

ST_SetSRID(ST_GeomFromText('POINT(826780.6026089027 6453587.838854727)'), 3857)),

 (6, 'Gayphoria', 'indoor_bunker', 'clubfloor', 'mixed', 8, 3,

ST_SetSRID(ST_GeomFromText('POINT(826683.9781744438 6454037.973652895)'), 3857)),

 (7, 'HardcoreGladiators', 'indoor_bunker', 'clubfloor', 'hardcore', 6, 4,

ST_SetSRID(ST_GeomFromText('POINT(826522.1100180662 6453923.433268025)'), 3857)),

 (8, 'HEAVEN&HILL', 'outdoor', 'clubfloor', 'techno', 7, 5,

ST_SetSRID(ST_GeomFromText('POINT(826575.0577964879 6454105.695812976)'), 3857)),

 (9, 'HeavensGate', 'outdoor', 'clubfloor', 'techno', 8, 6,

ST_SetSRID(ST_GeomFromText('POINT(826733.392018499 6453994.709123592)'), 3857)),

 (10, 'HEXTechnomovement', 'outdoor', 'clubfloor', 'techno', 20, 7,

ST_SetSRID(ST_GeomFromText('POINT(826888.1624477317 6453784.445349667)'), 3857)),

 (11, 'Masters_of_Hardcore', 'outdoor', 'clubfloor', 'hardcore', 19, 8,

ST_SetSRID(ST_GeomFromText('POINT(826674.8439942825 6454092.204311743)'), 3857)),

 (12, 'PLAY!', 'indoor_bunker', 'clubfloor', 'mixed', 10, 9,

ST_SetSRID(ST_GeomFromText('POINT(826678.3446000218 6453754.550620814)'), 3857)),

 (13, 'PUNX', 'outdoor', 'clubfloor', 'mixed', 9, 10,

ST_SetSRID(ST_GeomFromText('POINT(826729.066162427 6453855.776056517)'), 3857)),

 (14, 'SUNSHINE_LIVE', 'outdoor', 'clubfloor', 'mixed', 5, 11,

ST_SetSRID(ST_GeomFromText('POINT(826460.437801878 6453746.9315019995)'), 3857)),

 (15, 'Tunnel', 'indoor_bunker', 'clubfloor', 'techno', 9, 12,

ST_SetSRID(ST_GeomFromText('POINT(826680.9911401173 6453825.834958386)'), 3857)),

 (16, 'V.I.B.E.Z', 'indoor_tent', 'clubfloor', 'goa', 6, 13,

ST_SetSRID(ST_GeomFromText('POINT(826476.1114177285 6453883.857951582)'), 3857)),

 (17, 'AcidWars', 'indoor_bunker', 'clubfloor', 'techno', 5, 14,

ST_SetSRID(ST_GeomFromText('POINT(826525.0914672613 6453775.013397065)'), 3857)),

 (18, 'AirportOpenAir', 'outdoor', 'clubfloor', 'techno', 7, 15,

ST_SetSRID(ST_GeomFromText('POINT(826572.3300039219 6454047.777850686)'), 3857)),

 (19, 'BLACKLIST', 'indoor_tent', 'clubfloor', 'dubstep', 18, 16,

ST_SetSRID(ST_GeomFromText('POINT(826496.1388157597 6453978.552714013)'), 3857)),

 (20, 'DieRakete', 'indoor_bunker', 'clubfloor', 'techno', 9, 17,

ST_SetSRID(ST_GeomFromText('POINT(826683.606459567 6453890.470710499)'), 3857));

Code Block 3. Inserting data into the tables with geometry (see the complete code under source code).

Creating Views & Indexes (DDL)

After inserting all the data into the different tables, I created two views, the first for the combination

of areas with stages, booths and facilities and the second for the combination between the timetable

and the different stages. Both views contain some of the most frequently used features of this

database. Instead of joining the different tables together for each query, the views now provide an

efficient way to retrieve the data.

CREATE VIEW area_details AS

SELECT

 a.area_id, a.name AS area_name, a.category AS area_category, s.stage_id, s.name AS

stage_name,

Spatial Databases

Annabelle Kiefer (s1111172)

8

 f.facility_id,f.name AS facility_name, f.type AS facility_type,

 b.booth_id, b.name AS booth_name, b.type AS booth_type

FROM areas a

LEFT JOIN stages s ON a.area_id = s.area_id

LEFT JOIN facilities f ON a.area_id = f.area_id

LEFT JOIN booths b ON a.area_id = b.area_id;

CREATE VIEW timetable_stages AS

SELECT

 t.event_id, t.name AS event_name,t.start_time,t.end_time,t.stage_id, s.name AS

stage_name,s.type AS stage_type,

 s.floor_type,s.genre AS stage_genre,s.area_id,s.operator_id

FROM timetable t

JOIN stages s ON t.stage_id = s.stage_id;

Code Block 4. Creating views for stage and timetable details.

Likewise, four indexes were created in the database to increase performance. First, I created two

indexes for the name rows in the stages and areas tables, since these are often part of queries. Equally

important was the creation of two GIST-indexes for the geom data of the areas as well as stages, since

these two are also frequently queried.

CREATE INDEX idx_stages_name ON stages(name);

CREATE INDEX idx_areas_name ON areas(name);

CREATE INDEX idx_areas_geom ON areas USING GIST(geom);

CREATE INDEX idx_stages_geom ON stages USING GIST(geom);

Code Block 5. Creating general & spatial indexes for the stages & areas tables.

Queries

Non-spatial queries

To test if the created views work correctly, I started with some simple non-spatial queries. First, I used

the timetable_stages view to select all events taking place on the OpenAirFloor during the festival.

Secondly, I wanted to see which area contained the most objects (facilities, booths & stages).

SELECT * FROM timetable_stages

WHERE stage_name = 'OpenAirFloor'

ORDER BY start_time;

SELECT area_name,

 COUNT(DISTINCT facility_id) AS num_facilities,

 COUNT(DISTINCT stage_id) AS num_stages,

 COUNT(DISTINCT booth_id) AS num_booths

FROM area_details

Spatial Databases

Annabelle Kiefer (s1111172)

9

WHERE facility_id IS NOT NULL

 OR stage_id IS NOT NULL

 OR booth_id IS NOT NULL

GROUP BY area_name

ORDER BY area_name;

Code Block 6. Non-spatial SQL queries using the created views timetable_stages & areas_details.

Figure 6. Result of querying the events on the OpenAirFloor.

The second query clearly shows that the festival ground contains the most objects with 18 facilities and

7 booths. This is followed by the food areas with 12, 6 and 5 booths respectively.

Figure 7. Result showing the number of facilities, stages and booths per area.

Spatial queries

The database allows a variety of spatial queries. I first wanted to query an object that is closest to a

certain location. I entered the location of to the CenturyCircus stage and then queried for the nearest

facilities with toilets.

WITH stage_location AS (

 SELECT geom FROM stages WHERE name = 'CenturyCircus')

SELECT f.name, f.type, f.geom, ST_Distance(f.geom, s.geom) AS distance

FROM facilities f, stage_location s

Spatial Databases

Annabelle Kiefer (s1111172)

10

WHERE f.type = 'toilet'

ORDER BY distance;

Code Block 7. Spatial query used to identify toilets near the CenturyCircus stage.

This query can also be performed in QGIS in order to visualize the toilets closest to the stage. In the

following example, you can see the CenturyCircus stage in black and the toilets closest to it in light

colors. The dark colors show the toilets that are furthest away from the selected stage.

Figure 8. Result showing the toilets (facilities) near the CenturyCircus stage in QGIS.

Furthermore, I wanted to test the interaction with dynamic user requests. To do this, I created two

users who are at a specific location at a certain time. Let’s assume we have two friends who eat

something at the DeepHouse_Döner before going to see OGUZ at the HexTechnomovement stage. They

both want to know if they will make it to the gig in time. Person 1 has finished his food before person

2, so he has more time to get to the stage. To determine the time the user needs to get to their

destination, we assume they are walking 1.4 m/s.

INSERT INTO users (user_id, current_location, timestamp)

VALUES ('1', ST_SetSRID(ST_MakePoint(826620.8964438796, 6453781.233965318), 3857),

TIMESTAMP '2025-08-02 01:24:00');

INSERT INTO users (user_id, current_location, timestamp)

VALUES ('2', ST_SetSRID(ST_MakePoint(826620.8964438796, 6453781.233965318), 3857),

TIMESTAMP '2025-08-02 01:27:00');

Spatial Databases

Annabelle Kiefer (s1111172)

11

--Query for user 1

WITH user_location AS (

 SELECT current_location, timestamp FROM users WHERE user_id = 1

),

event_details AS (

 SELECT

 e.event_name,

 e.stage_name,

 s.geom AS stage_geom,

 ST_Distance(u.current_location, s.geom) AS distance_meters,

 e.start_time AS event_start_time,

 u.timestamp AS user_timestamp

 FROM timetable_stages e

 JOIN stages s ON e.stage_id = s.stage_id

 CROSS JOIN user_location u

 WHERE e.event_name = 'OGUZ'

)

SELECT *,

 (distance_meters / 1.4) AS estimated_travel_seconds,

 event_start_time - user_timestamp AS time_until_event,

 CASE

 WHEN (distance_meters / 1.4) < EXTRACT(EPOCH FROM (event_start_time -

user_timestamp))

 THEN '✅ User will make it'

 ELSE '❌ User will not make it'

 END AS arrival_status

FROM event_details;

Code Block 7. Dynamic SQL query showing if a user will arrive on time for a performance

After running this query, it becomes clear that user 1, who has finished their food before user 2, will be

able to reach the performance on time. User 2, on the other hand, only has 3 minutes until the start of

the performance. He must therefore be faster than 1.4 m/s to make it in time.

User 1:

User 2:

Figure 9. Result showing if users 1 & 2 will make it to the selected performance on time.

Spatial Databases

Annabelle Kiefer (s1111172)

12

Conclusion

In conclusion, the created database fulfills the necessary criteria to serve as a backend for a WebGIS. It

organizes booths, facilities and stages in different areas. In addition, it allows for user-specific dynamic

queries that display facilities near a visitor’s current position, as well as the use of a user’s last

timestamp to link them to current events. To ensure that the database works efficiently, it was built in

the third normal form. At the same time, views were created for easy access to important data, as well

as indexes where required.

To improve the database even further, more data could be added to the database, especially in relation

to the CampingVillage, since it is an important part of the festival and is currently only shown as an

area without facilities, booths or stages. At the same time, more indexes and views could be created as

needed to improve the performance of the database. Finally, the dynamic user information could be

improved, since it currently only contains two examples, but is an important part of the database,

especially with regard to the creation of the web app.

